An Efficient Procedure to Identify and Quantify New Molecules for Insulating Gas Mixtures

نویسندگان

  • C. M. Franck
  • D. A. Dahl
چکیده

In this contribution, a new procedure to systematically identify and quantify novel molecular gases with low global warming potential for application in high voltage insulation as gas mixtures is presented. The attention is focused on highly efficient procedures to be able to scan a large number of candidate gases. To identify new molecules, we derived an empirical correlation between the electric strength of a gas and certain molecular properties, like polarizability or dipole moment, which can be calculated by means of density functional theory. The swarm parameters of these pre-selected molecules in mixtures with buffer gases is then quantified, using a newly set-up Pulsed Townsend experiment. The setup operates with a high degree of automation to enable systematic evaluation of gas mixtures not to miss possible synergistic effects. Key element of this PT setup is a new photocathode that works with a high quantum efficiency and long lifetime even when exposed to reactive species during the measurements. Moreover, for an automated operation it is important to know precisely in which range the experiment can be operated, i.e. for example to know up to which electron density space charge effects can be neglected. Finally, the measured swarm parameters need to be translated into breakdown voltage strengths of different electrode arrangements and different applied voltage wave shapes. For this, a model of the the streamer to leader transition in SF6 will be applied to other strong electronegative gases in future studies to test if the model is universally valid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Separation of Aromatic and Alcoholic Mixtures using Novel MWCNT-Silica Gel Nanocomposite as an Adsorbent in Gas Chromatography

The separations of alcohols with hydrophilic and hydrophobic parts, and the separation of aromatic mixtures, are extremely important processes in gas and petroleum industries. Choosing an adsorbent for performing this separation is the most important part of the process. Silica gel is used as an adsorbent is various techniques such as pressure swing adsorption (PSA) and gas and liquid chromatog...

متن کامل

Estimating the second virial coefficients of some real gas mixtures and related thermodynamic views

Using the Gaussian 2003 software and MP2 /6 – 311+ G method for the C2H4 : O2, CO:Cl2 andCO2:CO2 pairs and MP2/6-311++G** method for the CO2:H2O pair and B3lyp/6-31G methodfor the O2:O2 pair the optimized interaction energies between two considered pair molecules ofstudied gases(C2H4:O2, CO:Cl2, CO2:H2O, O2:O2 and CO2:CO2 pairs) as a function of thedistances between the centers of two considere...

متن کامل

An Effective Iterative Algorithm for Modeling of Multicomponent Gas Separation in a Countercurrent Membrane Permeator

 A model is developed for separation of multicomponent gas mixtures in a countercurrent hollow fiber membrane module. While the model’s solution in countercurrent module usually involves in a time consuming iterative procedure, a proper initial guess is proposed for beginning the calculation and a simple procedure is introduced for correcting the guesses, hereby the CPU time is decreased ess...

متن کامل

Energy Balance and Gas Thermalization in a High Power Microwave Discharge in Mixtures

The dynamics of fast gas heating in a high power microwave discharge in air, is investigated in the framework of FDTD simulations of the Maxwell equations coupled with the fluid simulations of the plasma. It is shown that, an ultra-fast gas heating of the order of several 100 Kelvins occurs in less than 100 ns. The main role in the heating is played by the electron impact dissociation of , diss...

متن کامل

A Theoretical and Experimental Investigation for a New Reduced & Reliable Life Time Estimation Method of Insulating Materials

Abstract: The big share of electrical breakdown in electrical devices failure among other factors is caused by multitasking such as electrical insulation, mechanical support, energy dissipation, Energy storage, etc. which brings many attentions to lifetime estimation of said insulation material. Up to now, there was no-general theory had been suggested for lifetime estimation of mentioned insul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013